Formation of Magnetically Supported Disks During Hard-to-Soft Transition in Black Hole Accretion Flows

نویسندگان

  • Mami Machida
  • Kenji Nakamura
چکیده

We carried out three-dimensional global resistive magnetohydrodynamic (MHD) simulations of the cooling instability in optically thin hot black hole accretion flows by assuming bremsstrahlung cooling. General relativistic effects are simulated by using the pseudo-Newtonian potential. Cooling instability grows when the density of the accretion disk becomes sufficiently large. We found that as the instability grows the accretion flow changes from an optically thin, hot, gas pressure-supported state (low/hard state) to a cooler, magnetically supported, quasi-steady state. During this transition, magnetic pressure exceeds the gas pressure because the disk shrinks in the vertical direction almost conserving the toroidal magnetic flux. Since further vertical contraction of the disk is suppressed by magnetic pressure, the cool disk stays in an optically thin, spectrally hard state. In the magnetically supported disk, the heating rate balances with the radiative cooling rate. The magnetically supported disk exists for time scale

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Structure of Optically Thin, Magnetically Supported, Two- Temperature, Black Hole Accretion Disks

We present global solutions of optically thin, two-temperature black hole accretion disks incorporating magnetic fields. We assume that the ̟φ-component of the Maxwell stress is proportional to the total pressure, and prescribe the radial dependence of the magnetic flux advection rate in order to complete the set of basic equations. We obtained the magnetically supported (low-β) disk solutions, ...

متن کامل

Steady Models of Optically Thin, Magnetically Supported Black Hole Accretion Disks

We obtained steady solutions of optically thin, single temperature, magnetized black hole accretion disks assuming thermal bremsstrahlung cooling. Based on the results of 3D MHD simulations of accretion disks, we assumed that the magnetic fields inside the disk are turbulent and dominated by azimuthal component. We decomposed magnetic fields into an azimuthally averaged mean field and fluctuati...

متن کامل

Magnetic Inversion as a Mechanism for the Spectral Transition of Black Hole Binaries

A mechanism for the transition between low/hard, high/soft, and steep power law (SPL) spectral states in black hole X-ray binaries is proposed. The low/hard state is explained by the development of a magnetically arrested accretion disk attributable to the accumulation of a vertical magnetic field in a central bundle. This disk forms powerful jets and consists of thin spiral accretion streams o...

متن کامل

Correlation between Hard X-ray Peak Flux and Soft X-ray Peak Flux in the Outburst Rise of Low Mass X-ray Binaries

We have analyzed Rossi X-ray timing explorer (RXTE) pointed observations of the outbursts of black hole and neutron star soft X-ray transients in which an initial low/hard state or ‘island’ state, followed by a transition to a softer state, was observed. In three sources, the black hole transient XTE J1550-564, the neutron star transient Aquila X-1 and a quasi-persistent neutron star low mass X...

متن کامل

Quasi-Periodic Variability and the Inner Radii of Thin Accretion Disks in Galactic Black Hole Systems.

We calculate upper bounds on the inner radii of geometrically thin accretion disks in galactic black hole systems by relating their rapid variability properties to those of neutron stars. We infer that the inner disk radii do not exhibit large excursions between different spectral states, in contrast with the concept that the disk retreats significantly during the soft-to-hard-state transition....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005